منابع مشابه
Sizing DNA using a nanometer-diameter pore.
Each species from bacteria to human has a distinct genetic fingerprint. Therefore, a mechanism that detects a single molecule of DNA represents the ultimate analytical tool. As a first step in the development of such a tool, we have explored using a nanometer-diameter pore, sputtered in a nanometer-thick inorganic membrane with a tightly focused electron beam, as a transducer that detects singl...
متن کاملElectrolytic transport through a synthetic nanometer-diameter pore.
We have produced single, synthetic nanometer-diameter pores by using a tightly focused, high-energy electron beam to sputter atoms in 10-nm-thick silicon nitride membranes. Subsequently, we measured the ionic conductance as a function of time, bath concentration, and pore diameter to infer the conductivity and ionic mobility through the pores. The pore conductivity is found to be much larger th...
متن کاملNarrow pore-diameter polypyrrole nanotubes.
Bulk quantities of electrically conducting nanotubes of polypyrrole having narrow pore diameter (6 nm) can be synthesized rapidly by chemical oxidative polymerization of pyrrole in the presence of stoichiometric amounts of V2O5 nanofibers. The V2O5 nanofibers act as templates for polymerization and yield, as the initial product, polypyrrole nanotubes with pores filled with V2O5. The V2O5 dissol...
متن کاملNanometer-Scale Sizing Accuracy of Particle Suspensions on an Unmodified Cell Phone Using Elastic Light Scattering
We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone's camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer ...
متن کاملReading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore.
The primary structure of a protein consists of a sequence of amino acids and is a key factor in determining how a protein folds and functions. However, conventional methods for sequencing proteins, such as mass spectrometry and Edman degradation, suffer from short reads and lack sensitivity, so alternative approaches are sought. Here, we show that a subnanometre-diameter pore, sputtered through...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2004
ISSN: 0006-3495
DOI: 10.1529/biophysj.104.041814